Metamodeling Method Using Dynamic Kriging for Design Optimization
نویسندگان
چکیده
Metamodeling has been widely used for design optimization by building surrogate models for computationally intensive engineering application problems. Among all the metamodeling methods, the kriging method has gained significant interest for its accuracy.However, in traditional krigingmethods, themean structure is constructed using a fixed set of polynomial basis functions, and the optimization methods used to obtain the optimal correlation parameter may not yield an accurate optimum. In this paper, a new method called the dynamic kriging method is proposed to fit the true model more accurately. In this dynamic kriging method, an optimal mean structure is obtainedusing thebasis functions that are selected bya genetic algorithm from the candidate basis functions based on a new accuracy criterion, and a generalized pattern search algorithm is used to find an accurate optimum for the correlation parameter. The dynamic kriging method generates a more accurate surrogate model than other metamodeling methods. In addition, the dynamic kriging method is applied to the simulation-based design optimization with multiple efficiency strategies. An engineering example shows that the optimal design obtained by using the surrogate models from the dynamic kriging method can achieve the same accuracy as the one obtained by using the sensitivity-based optimization method.
منابع مشابه
A Metamodeling Method Using Dynamic Kriging and Sequential Sampling
The metamodeling has been widely used for design optimization problems by building surrogate models for compute-intensive simulation models. Among metamodeling methods, the Kriging method has gained significant interest for its accuracy in developing the surrogate model. However, in traditional Kriging methods, the optimization methods that are used to obtain the optimum correlation parameter d...
متن کامل8th World Congress on Structural and Multidisciplinary Optimization
1. Abstract Over three decades, metamodeling has been widely applied to design optimization problems to build a surrogate model of computation-intensive engineering models. The Kriging method has gained significant interests for developing the surrogate model. However, traditional Kriging methods, including the ordinary Kriging and the universal Kriging, use fixed polynomials basis functions to...
متن کاملGenetic Algorithm Optimization for Reduced Order Problem Based on Kriging Modeling with Restricted Maximum Likelihood Criterion
1. Abstract Complex and computationally intensive modeling and simulation of real-world engineering systems can include a large number of design variables in the optimization of such systems. Consequently, it is desirable to conduct variable screening to identify significant or active variables so that a simpler, more efficient, and accurate optimization process can be achieved. This paper empl...
متن کاملBlind Kriging: A New Method for Developing Metamodels
Kriging is a useful method for developing metamodels for product design optimization. The most popular kriging method, known as ordinary kriging, uses a constant mean in the model. In this article, a modified kriging method is proposed, which has an unknown mean model. Therefore it is called blind kriging. The unknown mean model is identified from experimental data using a Bayesian variable sel...
متن کاملUse of Adaptive Metamodeling for Design Optimization
* Research Assistant, Applied Research Laboratory. Phone: (814) 865-5930. Email: [email protected]. † Assistant Professor, Departments of Mechanical & Nuclear Engineering and Industrial & Manufacturing Engineering. Member AIAA. Corresponding Author. Phone/fax: (814) 863-7136/4745. Email: [email protected]. ABSTRACT This paper describes a method to implement an adaptive metamodeling procedure during sim...
متن کامل